Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Rock Valley fault zone in southern Nevada has a notable history of seismic activity and is the site of a future direct comparison experiment of explosion and earthquake sources. This study aims to gain insight into regional tectonic processes by leveraging recent advances in seismic monitoring capabilities to elucidate the local stress regime. A crucial step in this investigation is the accurate determination of P-wave first-motion polarities, which play a vital role in resolving earthquake focal mechanisms of small earthquakes. We deploy a deep learning-based method for automatic determination of first-motion polarities to vastly expand the polarity dataset beyond what has been reviewed by human analysts. By the integrating P-wave polarities with new measurements of S/P amplitude ratios, we obtain robust focal mechanism estimates for 1306 earthquakes with a local magnitude of 1 and above occurring between 2010 and 2023 in southern Nevada. We then use the focal mechanism catalog to examine the regional stress orientation, confirming an overall trans-tensional stress regime with smaller scale complexities illuminated by individual earthquake sequences. These findings demonstrate how detailed analyses of small earthquakes can provide fundamental information for understanding earthquake processes in the region and inform future experiments at the Nevada National Security Site.more » « lessFree, publicly-accessible full text available March 12, 2026
-
ABSTRACT We present initial findings from the ongoing Community Stress Drop Validation Study to compare spectral stress-drop estimates for earthquakes in the 2019 Ridgecrest, California, sequence. This study uses a unified dataset to independently estimate earthquake source parameters through various methods. Stress drop, which denotes the change in average shear stress along a fault during earthquake rupture, is a critical parameter in earthquake science, impacting ground motion, rupture simulation, and source physics. Spectral stress drop is commonly derived by fitting the amplitude-spectrum shape, but estimates can vary substantially across studies for individual earthquakes. Sponsored jointly by the U.S. Geological Survey and the Statewide (previously, Southern) California Earthquake Center our community study aims to elucidate sources of variability and uncertainty in earthquake spectral stress-drop estimates through quantitative comparison of submitted results from independent analyses. The dataset includes nearly 13,000 earthquakes ranging from M 1 to 7 during a two-week period of the 2019 Ridgecrest sequence, recorded within a 1° radius. In this article, we report on 56 unique submissions received from 20 different groups, detailing spectral corner frequencies (or source durations), moment magnitudes, and estimated spectral stress drops. Methods employed encompass spectral ratio analysis, spectral decomposition and inversion, finite-fault modeling, ground-motion-based approaches, and combined methods. Initial analysis reveals significant scatter across submitted spectral stress drops spanning over six orders of magnitude. However, we can identify between-method trends and offsets within the data to mitigate this variability. Averaging submissions for a prioritized subset of 56 events shows reduced variability of spectral stress drop, indicating overall consistency in recovered spectral stress-drop values.more » « lessFree, publicly-accessible full text available May 2, 2026
An official website of the United States government
